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SUPPLEMENTARY MATERIALS

Phase flows in state spaces

The time course of state variables is prescribed by dynamic systems, often represented
by differential or integral-differential equations as in the case of the Epileptor. The time
series resulting from solving differential equations can either be plotted as the value of
the state variables over time, or equivalently as a trajectory in the state space. The state
space (also sometimes referred to as phase space) is spanned by the state variables and
a trajectory is a connected path through phase space. As an approximation, the
trajectory may also be represented in a space spanned by its delayed coordinates
(Takens 1981) (see Supplemental Figure 3). Such visualization unfolds the trajectory if
the dimension of the delay space corresponds to at least 2n+1 times the dimension of
the attractor or flow in the original state space. Then there is a topological mapping from
the original state space to the embedding space. The delay time for the attractor
reconstruction from a scalar time series of infinite length can be chosen almost
arbitrarily (Buzug and Pfister 1992). The time derivative of the state variables gives the
instantaneous rate of change of the system and defines a tangent vector in the state
space, basically indicating how the system will evolve along the trajectory. The tangent
vector is a vector at every point in state space, which is equivalent to the solution of the
evolution equation at that point. Essentially at each point in the state space there exists a
vector defining a vector field, which describes the directed flow through the state space
embodying the evolution equation. Hence a trajectory traces the time-dependent

solution of a dynamical system through a succession of instantaneous states.
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Bifurcations and invariances

As control parameters of a dynamic system change, the structure of the flow in state
space will also depend on these parameters. If a state variable is sufficiently slower than
all other state variables (as in the case of the Epileptor), then the slow variable can be
also regarded as acting as a control parameter for finite periods of time. Small changes
in the slow parameter or control parameters may then produce no qualitative changes
in the state space until a critical value is reached and the dynamical system is said to
have gone through a bifurcation. In the neighborhood of a hyperbolic fixed point (where
all eigenvalues from a linearization around the fixed point are non-zero), the Hartman-
Grobman theorem states that the behavior of a dynamical system is invariant and
qualitatively the same as the behavior of its linearization near this point provided that
no eigenvalue of the linearization has its real part equal to 0. Therefore when dealing
with such fixed points one can use the simpler linearization of the system to analyze its
behavior.

Sufficiently close to the critical control parameter value of a local bifurcation (i.e. when
an equilibrium point changes its stability), a dynamical system may be mapped upon a
nonlinear canonical form of a given bifurcation via a coordinate transform (Kuznetsov
1998), which defines the normal form of the dynamical system. Global bifurcations
occur when 'larger' invariant sets, such as periodic orbits, collide with equilibria. This
causes changes in the topology of the trajectories in the phase space, which cannot be
confined to a small neighborhood, as is the case with local bifurcations. Normal forms of
global bifurcations are not systematically defined. Bifurcations show characteristic
scalings of their amplitudes and frequencies as a function of the control parameter and
its difference to its critical value (Izhikevich, 2000). Further away from this critical

parameter value, structural stability remains a fundamental property of a dynamical
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system, which means that the qualitative behavior of the trajectories represented by the
topology of the flow in state space is unaffected by small (sufficiently smooth)
parameter variations. Examples of such qualitative properties are numbers of fixed
points and periodic orbits (but not their periods). This behavior holds for all systems in
two dimensions, but is more difficult to generalize for higher dimensions where more
complex behaviors may be more typical such as strange attractors and hence need to be

studied on a case-by-case basis.

Alternative formulation of Epileptor equations
The low-pass filtering effects of the integral g(x) can be rewritten through the use of a
dummy variable u. Then the Epileptor equations read as follows:
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All parameters and functions are as in the main text. The dummy variable u acts as a low
pass filter due to the time scale separation: % =100 >,

Assessing logarithmic scaling in interspike intervals

We assessed the best model for our data using a sample of 20 seizures (16 mouse, 2
zebrafish, 2 human) via goodness-of-fit (GoF) with sum of squared residual error (SSE)
and degree-of-freedom-adjusted R-square (R2). Several potential equations were tested:

log (Interspike interval (ISI) = a*log x + b), power law (a*x"b +c), inverse square root
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(a*1/sqrt(x) + b) and exponential (a*exp(b*x)). Choice of best fit was made by
comparing the GoF with a qualitative assessment of how each equation captured the
dynamics. We used the R-square to compare GoF between the different equations,
reinforced by the fact that all equations have the same number of predictors (degrees of
freedom). We also considered the constant model (ISI = k); however this was clearly not
preferred in any of the training data because the variable x was significant in all of them.
Qualitatively, the equation must predict that interspike intervals increase as the
seizure terminates and then spiking stops completely-the “critical slowing down” that
has been previously identified (Kramer et al, 2012). Exponential equations were
rejected because they because they underestimated the ISI near the end of seizures and
predicted that spikes would continue after the seizure ended. Linear, constant, and
polynomial functions also did not capture the dynamics near seizure termination. Thus,
power law (of which inverse square root is a special case) and log equations are the
primary candidates, but often are quite similar in this range of data. In cases where GoF
from log and power law were similar, we performed a modified predicted residual sum
of squares (PRESS) statistic (Tarpey, 2000) to predict the entire distribution of ISI by
fitting from data in only the last 25% of the seizure. The GoF was then assessed by
calculating the SSE with that predicted model extrapolated to the entire dataset. We
compared power law with log scaling in 20 seizures (16 mouse, 2 zebrafish, 2 human)
and found log scaling to have lower RMSE in 16 of the cases (p< 0.005, binomial test)
and concluded that log scaling is the most appropriate model (Supplemental Figure 9A).
When these equations were tested on the whole cohort of human patients, there were
some data that did not fit any of the equations well. A small number of the human
seizures (4 out of 24) did not slow down at the end, producing “reversed” slopes

(Supplemental Table 1, Supplemental Figure 2C). Note that clinically this type of seizure
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is very unusual, as ‘slowing down’ is a well-known characteristic of human seizure
termination. Interestingly, the ISI for these 4 patients was adequately modeled with a
constant, which places them into a different class of the seizure taxonomy in Table 1.
There were two other effects occasionally seen in all species that were not explained by
the log scaling. The first was irregular, slow firing at seizure onset (e.g. Fig. 6A). This
“stuttering” was usually large spike wave discharges occurring before the fast spiking, in
the period in which seizure onset is difficult to define. These types of seizure onset have
also recently been identified in a heuristic classification of seizure types (Perucca et al.
2013). To be conservative, these periods were included within the seizure epoch, though
clinicians typically disagree about the precise time of seizure onset (Benbadis et al.,
2009). The second was clonic firing at the end of seizure. The fast spiking during clonic
bursts was similar to that at the beginning of the seizure, while the intervals between
bursts fit the log scaling (Fig. 6D, Supplemental Figure 9). When we compared inverse
square root and log scaling in the full complement of 24 human seizures (Supplemental
Table 1), the R?, SSE and PRESS values were not significantly different, and thus we
deemed either the SNIC (1/square root) or the homoclinic (log) bifurcations the most
appropriate. Including the DC shift to the bistability of the offset, we conclude that the

homoclinic bifurcation is correct for the seizures we studied.
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Scaling of the ISI

Linear distance to seizure offset

Supplemental Figure 1: Logarithmic scaling of interspike interval (ISI) in the Epileptor

model, providing evidence for a homoclinic bifurcation at seizure offset.
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Supplemental Figure 2: Examples from four of the human patients listed in Suppl.
Table 1. Top: raw data from one EEG channel. Bottom: Interspike intervals as a function
of time to end of seizure. Red line: data fit to log equation. Note that in study 006, the
[SI are much smaller than in other patients and do not slow down at the end of the
seizure: the data do not fit well to the log equation and could potentially be modeled as a
constant.
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Supplemental Figure 3. Topologies of seizures in various species. Delayed plot
representation of seizures generated in Epileptor (A), in the intact mouse hippocampus
(B), zebrafish (C) and human (D), corresponding to the examples shown in Fig. 1. In this
space, the coordinates of a point M(X,Y,Z) are x(t) (the value of the field potential at time
t), x(t-At) and x(t-2At); with At a small time interval. The trajectories, although distorted,

are very similar in nature, composed of spirals traveling on cone-like structures.
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Supplemental Figure 4. Lack of crosstalk between the chambers containing the
hippocampus and the septum. Extracellular [K*] was raised in the septum chamber
(horizontal bars), and the extracellular [K*] measured with a K* sensitive electrode in
the chamber with the hippocampus. Raising [K*] in the septum chamber did not change

[K*] in the hippocampus. The experiment was reproduced in 3 different preparations.
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Epileptor Dynamics
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Supplemental Figure 5. Different seizure-like events generated by the Epileptor in the
presence of increasing levels of noise, from top to bottom. The initial conditions for the
numerical simulation are x1=0.022; y1=0.91; z=3.84; x2=-1.11; y>=0. 73. Noise is
introduced into each equation as linear additive Gaussian white noise with zero mean
and a variance of 0.025 for the first subsystem and 0.1, 0.25, 0.71, and 1 (from top to
bottom) for the second subsystem. Although noise changes the some aspects of the
appearance, the main building blocks, fast discharges and SWEs, are still present albeit

organized differently.
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Supplemental Figure 6: Increase of synaptic noise at seizure onset in the hippocampus
in low Mg?2*. A. An Oriens-Lacunosum Moleculare (0-LM) GABAergic neuron was
recorded in whole cell configuration current clamp mode simultaneously with the local
field potential (LFP) in low Mg?* conditions. B. Zoom of the activities in the orange
(interictal, i.e. far from the SLE) and grey (pre-ictal, just before SLE onset) regions
shown in A. During the interictal period, few synaptic inputs could be detected (red
trace). In contrast, during the preictal period, there was strong barrage of synaptic
inputs, leading to cell firing (black trace). Note that the preictal period was associated
with a 10 mV depolarization of the membrane. The same behavior was found in four
other GABA neurons (four different preparations). C. Left: Histogram of membrane
voltages in preictal vs. interictal period. Both are Gaussian distributions, and the preictal
period has a higher mean (net depolarization). Right: Comparison of power spectral
density (PSD) between preictal and interictal. Both have a “pink” noise spectrum, but
with a clear difference in the two periods (see Supplemental Table 1). D. Simultaneous
recordings of LFP and of a Hippocampal-Septum GABA neuron in whole cell
configuration voltage clamp mode at +10 mV to measure spontaneous postsynaptic
inhibitory (GABAergic) currents (IPSCs). Note the strong increase in GABAergic activity
(*), which was not associated with any detectable activity in the LFP. Just before SLE,
there was another barrage of activity (**, and inset). Similar increases in noise were
found in 20 other GABA neurons (20 different preparations).
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Supplemental Figure 7: Increasing [K*] in the septum compartment increases synaptic
activity in a simultaneously-recorded neuron in the hippocampus. The ACSF of the
hippocampal compartment was normal. Here, we used a Cs-Cl solution, with which
glutamatergic, cholinergic and GABAergic inputs appear as downward deflections. Note
the increase in synaptic activity as soon as the septum is exposed to increased [K*]. Upon
wash out, synaptic activity returned to baseline values. With this dual chamber, there is
no crosstalk (leakage) between one chamber and the other (Supplemental Figure 5). The
experiment was reproduced in three different preparations.
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Supplemental Figure 8. Extracellular [K*], FAD and O share a time course similar to
that of the slow state variable. A. Simultaneous recording of the field potential (top
trace) and extracellular [K*] during an SLE. Note that the time evolution of [K*] mirrors
that of the DC shift of the field. B. Simultaneous recording of FAD and O levels during
SLEs. Interestingly, it is only when FAD and O levels return to baseline that a new SLE
can occur, similar to the predicted behavior of the slow state variable. The experiment
was reproduced in n=10 preparations for [K*] measurements and n=3 preparations for

FAD/O,.
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Supplemental Figure 9: Logarithmic scaling. A: Comparison of log scaling and power
law. With the majority of data near the beginning of the seizure (high x), power and log
are sometimes very similar. However, if the equations are fit to only the last 25% of the
data (t=0 to 80, 33/635 points) and extrapolated, the log fit still represents the data well,
while the power law does not. Asterisks: T=80. B: During SLE in rat hippocampal slices
caused by very low calcium, the interspike intervals exhibit log scaling. There were
prominent clonic bursts of fast activity at the end. Box: clonic fast spiking intervals

ignored during equation fit.
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Study Gender Age Location Pathology R?
42 F 27 R Temp-Occ Neocortical gliosis 0.062
5 M 26 R Temp-Hippoc MTS 0.344
6 M 25 LFront Not resected 0.007* §
10 F 13 L Front-Par Neocortical gliosis 0.140
11 F 34 RFront FCD IIB 0252 §
122 M 37 R,LTemp Gliosis 0.076
16 F 36 RTemp Remote leptomeningitis 0.058
17 M 39 R Temp-Hippoc MTS 0.101
19 M 33 LTemp Neocortical gliosis 0.144
20 M 10 R Front Hemorrhagic stroke 0.138
21 M 16 RFront Neocortical gliosis 0.018
22 F 21 LTemp Neocortical gliosis 0.573
23 M 16 L Occ Remote destructive injury 0.053
24 F 23 L,RFront-Par-Temp Not resected 0.322
26 M 9 L Front-Temp Neocortical gliosis, FCD IIB 0.010*
27 F 34 LTemp MTS 0377 §
29 F 22 LTemp MTS and neocortical gliosis ~ 0.001
30 F 18 L Front Remote vascular injury 0.060
31 M 5 RFront FCD IIA 0.279
33 M 3 LFront Cortical tuber 0.003*
34 F 33 RFront Grade 2 oligodendroglioma  0.018
37 F 62 RPar Not resected 0.105
38 M 58 L Temp MTS 0.207 §
40 M 32 L Front-Par Not resected 0.038*
Supplemental Table 1: Patient summary and goodness-of-fit

Deidentified data for each individual patient are stored on www.ieeg.org as a numbered
“Study #” (e.g. “4_2" is “Study 004_2"). EEG, demographic, and clinical metadata are all
freely available from the website. All studies present in the database at time of analysis
were included except for one that had no data (Study 014) and one that had no seizure
(Study 028). Pathology listed is taken from the clinical documentation. *- indicates data
that did not fit the log equation well and resulted in a “reversed” slope.

§- Subject data shown in Figure S5. Study 24 was used in Fig. 3. Study 34 was used for
Fig. 1 and Suppl. Fig. 4 & 6D. R2: DoF-adjusted R2 of logarithmic equation fit (perfect fit =
1). Temp: temporal lobe, Occ: occipital, Front: frontal, Par: parietal, Hippoc:

hippocampus, MTS: mesial temporal sclerosis, FCD: focal cortical dysplasia.

15



Jirsa et al, Supplemental Information

Noise/N Vi Noise Ratio Peak noise intensity LFP Ratio Time to event (s
Spont 0 Mg2+ CC 2/2(2) 42+13 301 mVz 13+ .4 105+ 35
Spont 0 Mg2+ VC 10/16 (16) 27+2 98040 pA2 11+.2 35+21
Spont 0 Mg2* AP 6/13 (13) 54 + 68 (AP rate) 26+18
Summary 0 Mgz+  18/31 (31) 33+35
Evoked KCI VC 4/9 (5) 3.3+35 51898 pA? 1+.1 200 £135
Evoked mannitol VC 2/5 (3) 29+41 4548 (144580) pAz 1+.2 172+ 176
Noise Parameters
K Baseline change Ratio # spikes Distribution
Spont 0 Mg2+ VC 1.3+0.2 28 + 31 (pA) 14+08 lognormal
Spont 0 Mg2+ CC 19+0.3 6+2.7 (mV) 29+0.6 lognormal
Evoked KCI 14+0.2 30 £ 26 (pA) 2+23 lognormal
Evoked mannitol  2.1+0.2 29 + 29 (pA) 1.1+11 Gumbel

Noise/N= number of experiments with increased noise/total experiments. Parenthesis=
total number of seizures; Vi, noise ratio= preictal/interictal noise intensity. This and all
subsequent columns only measure those bursts with increased noise; Peak noise
intensity= maximum preictal value of noise intensity in 100 ms windows; LFP ratio=
preictal/interictal variance of field potential; Time to event= time prior to seizure that
noise began; K= parameter in 1/frequency”k equation fit in power spectrum; Baseline
change= preictal-interictal median value; Ratio # events= preictal/interictal total spikes;

Distribution= best fit of interspike intervals.

Supplemental Table 2: Noise analysis. Top: in 0 magnesium bursting, synaptic noise
increases over 50% of the time, often over a minute prior to the burst. This change is
often not measureable in field potential electrodes. Similarly, loose-attached electrodes
see an increase in firing rate prior to the bursts. Similar results were obtained when
evoking seizures with either additional potassium or mannitol, however the mannitol
did not increase synaptic noise significantly. Bottom: noise had similar characteristics in
the zero magnesium and KCl-evoked models, with lognormally distributed, frequent
spike times. The mannitol evoked seizures had very different spike distributions: less
frequent and associated with large LFP spikes, fitting the Gumbel (extreme value)

distribution.
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